مرحله دوم دوره سال IrA^ مال

(0

شكل زير، مقطع كدام يك از اين انواع را نشان مىدهد؟ پیرا؟

ب) موارد مشخص شده در شكل را ناكذارى كنيد. (ياسخ نادرست، نمرهى منفى دارد.)

	نام
	A
	B
	C
	D
	E
	F

ب) الف) اندمان توليدم: براى تثبيت يك مولكول CO2 :

 رنتَآميزى در هر شكل مشخص شده است.

NRA سال

سلولهاى هدف در مجاورت با پروتئين A داراى TAT A رنَآميزى اختصاصى پروتئين

شكل
سلولهاى هدف در مجاورت با پروتئين A فاقد TAT
A رنگَآميزى اختصاصى پرتئين

شكل
سلول هاى مونوسيت
رنگَآميزى هسته

مرحله دوم دوره سال IrA^

TAT داراى A سلولمونوسيت در مجاورت با پروتئين

TAT داراى A دلولمونوسيت در مجاورت با پروتئين A رنَآميزى اختصاصى پروتئين

در تصاوير زبر نتايج آزمايشهاى ديگرى را بر نمونههاى سلولهاى بنيادى جنينى مشاهده مىكنيد. در اين آزمايشها ورود پروتئين B به اين سلول ها در شرايط مختلف بررسى شده است.
سلول هاى جنينى

MrA^ سال مرحله دوم دوره

TAT داراى B سلولهاى جنينى در مجاورت با پروتئين
, رنَآميزى اختصاصى پروتئين

سلولهاى جنينى در مجاورت با پروتئين B داراى BAT
رنگَآميزى اختصاصى پروتئين

سلولهاى جنينى در مجاورت با پروتئين B داراى TAT رنگَآميزى اختصاصى پروتئين

شكل 10

مرحله دوم دوره سال IrA^ مال

TAT داراى B سلولهاى جنينى در مجاورت با پروتئين

B سلولهاى جنينى در مجاورت با پروتئين

درستى يا نادرستى هر عبارت را مشخص كنيد، علت را با ذكر شكلهاى مورد مقايسه بيان كنيد.
() هروتئين A به سلول
(r
(ヶ) (
© (
ه) جهش ايجاد شده در B باعث عدم اتصال رنگَ اختصاصى پروتئين B به آن آن مىشود.
4- (10 points) A predatory spider sits in its web waiting for prey to pass by. There are four types of potential prey in the environment:

Prey	Weight (mg)	Handling time (min.)	Encounter rate (Items per min.)
Gnats	10	1	1.0
Flies	60	3	5.0
Beetle larvae	100	2	5.0
Bees	20	4	3.0

NrA^ سال

In a modeling of foraging behavior, profitability for a captured prey to be eaten is calculated by division of its Energy gain (E) to its handling time (h). By considering the weight of the prey for measuring its energy gain, rank from low to high the set of prey items by profitability. (Item 4 is the most profitable.)

1.	2.	3.	4.
Show your calculations:			

(ها نمره) هيديدهاى به نام سفيد شدن مرجانها (coral bleaching) يكى از نترانىهاى بشر در حفاظت از منابع دريايى است. دانشمندان،

 استدلال خود را بنويسيد.

علت	$\begin{array}{\|r\|} \hline \text { ياسخ/خير) } \\ \hline \end{array}$	
		مركى تك سلولى هاى هإيزيست
		كاهش اكسيرّن آبر
		\|فزايش تكياختكان سمى در آب

 خانهى آخر، مشخص كنيد كه در مجموع، در حالات توصيف شده، كدام حالتِ اسيدوز يا آلكالوز ايجاد مىشود. (پاسخ نادرست، نمرهى منفى دارد.)
تذكر: زمانى دومين تغيير را مشخص كنيد كه اين تنيير در جبران فرايند سهمم عمدهاى داشته باشد.

مرحله دوم دوره سال IrA^

آلكجموع،	ر مجموع، اسيدوز	كاهش CO_{r} خون	افزايش $C O_{\mathrm{r}}$ خون	كاهش HCO_{r}^{-} خون	افزايش $H C O_{r}^{-}$ خون	
						به ادامه حركت نيست
						فردى كه به تازگى دحار ضربه سر و آسيب مركز تنفسى بصلالنخاع شده است.

 بدين منظور به اين دو راهنمايى دقت كنيد
 ץ-
 . A
B
C
.D
نقطه A در نمودار مشخص شده است. لذا ابتدا ب نقطهى B و C , D D را در نمدار زير مشخص كنيد.

مىدانيم اين نمودار با اتصال هر دو نقطهى متوالى به هم توسط خطوط مناسب كامل مىشود．بنابراين بهترين نوع خط را با توجه به شيب و تغييرات آن براى هر كدام از خطوط（BC ، AB و BC）، از جداول زير انتخاب كنيد و در جدول مربوط（جدول صفحه بعد）بنويسيد．

شكل خط	نوع خط	شـكل خط	نوع خط	شككل خط	نوع خط	شكهل خط	نوع خط
	r＇		r		1^{\prime}		1
	ε^{\prime}	－	ε		r^{\prime}		r

خط	خ
	AB
	BC
	CD

ب）اگر بهبودى كامل صورت نگیيرد و چسببندگى در برخى نقاط جنب فرد باقى بماند، مهمترين تغيير نمودار نسبت به حالت قبل در كدام نقطه يا خط（فقط بهصورت تغييرات در شيب）خواهد بود؟ چچگونه؟

 حجم نهايى اml تهيه شد．سيس مواد ديگرى مطابق جدول زير به هر يك از لولهها اضافه شد：

لولهى آزمايش شمارهى	بافر فسفات		هتزوكيناز	آب مقطر
1	$1 / 4 \wedge \mathrm{ml}$	－	roul	－
r	1／9vml	$1 \circ \mu \mathrm{l}$	$r \circ \mu \mathrm{l}$	－
r	1／foml	$r \circ \mu \mathrm{l}$	roul	－
f	$1 / 4 \mathrm{mml}$	$9 \circ \mu \mathrm{l}$	roul	－
\checkmark	$1 / 4 \circ \mathrm{ml}$	$\hat{\wedge} \circ \mu \mathrm{l}$	$r \circ \mu \mathrm{l}$	－
4	$1 / \sim 9 \mathrm{Ml}$	$9 \circ \mu \mathrm{l}$	$r \circ \mu \mathrm{l}$	－
شاهد	l／ヶrMm	$\Delta \circ \mu \mathrm{l}$	－	roul

MF。nm الف）با توجه به محتويات لولهى آزمايشى، نحوهى انجام واكنش و سنجش محصول نهايى آنزيم را از طريق قرائت جذب طول موج （مربوط به NADH）توضيح دهيد．نشان دادن معادلات انجام واكنش نيز كايز كافى است است جذبهاى قرائتشده توسط يكى از دانشيثّوهان به شرح زير است است：توجه كنيد كه جذب نمونهى شاهد، صفر درنظر كرفته شده و جذب ساير نمونهها در مقايسه با آن خوانده شده است．

شمارهى لوله	جذب）
1	－190
r	－／$/ \Delta \Delta$
r	－1990
＋	－／ヶ＾
\checkmark	－／19
9	\％1990

ب) با توجه به اطلاعات بالا، غلظت تركيبى 9 ¢ محاسبه كنيد. همحنين با توجه به اين كه سرعت واكنش با ميزان جذب كروه كروموفور ارتباط دارد، مقدار (

شمار لوله	r- دئوكسى كلوكز (mM)	$\frac{V_{i}}{V_{\text {。 }}}$
1		
r		
r		
${ }^{4}$		
Q		
9		

ج) از قسمتهاى شطرنجى زير، مقدار 。IC را برحسب mM محاسبه كنيد. (ابعاد واحدهاى نمودار را مشخص كنيد.)

$$
I C_{\Delta_{0}}=
$$

د) با توجه به رابطهاى كرفتن اين كه K هكَزوكيناز براى كلوكز 10 ميلىمولار است، مقدار K آنزيم را براى r- دئوكسى گلوكز محاسبه كنيد.

و پايان پروتئين مشخص شدهاند.)
-5' AUUCCCUGGG AUCGCGUAUC AGAUGGUGUA GGCGCCGGCG GCGAUCGGUG GCGAGCGUGC GAGCGAGCGU AGUCGCGAUC AAAAAAAAA AAAAAAAAA AAAAAAAAA
CGGACGGCGU
CGUGGCGCCU
CCUGCGUGCU
AGACGCGCGU
UGUCCGUACU
GCGAGCGCGA
GCGCGAGCGC
GGUGUGUCCG
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

ACGCGAUUGC	GGACUCGGCU
AAGAGACGCG	UGUCAGCGAG
ACCUCGAUGC	UCGAGUCGCG
ACUCGUGGCG	CCGGCGAGAC
CGUGGCGCCG	GCGAGACGCG
GAGAGAGAUG	GUGUACCUGC
GAGAGAGAGA	UGGUGUACCU
UACUCGUGGC	GCCGGCGAGA
AAAAAAAAAA	AAAAAAAAAA
AAAAAAAAAA	AAAAAAAAAA

GCGGCGAUCG	AUG \downarrow ACUGAAU
CGUAGGCGAG	CGCGAGAGAG
AUCGGUGUGU	CCGUACUCGU
GCGAGACGCG	UGCGAGCGAG
CGUACUCGAG	ACGCGUGCGA
GUGCUACCUC	UAAGUACGAG
GCGUGCUACC	UCGAUGCUCG
CGCGCGUACU	GCAAAAAAAA
AAAAAAAAAA	AAAAAAAAAA
AAAAAAAAAA	AAAAAAAAAA

 براى بررسى توالى اين RNAها با الكَبردارى از آزمايش نيرنبرى در در كشف كدونها

 طورى تيمار كرد كه نخستين نوكلئوتيد سمت 'ه آنها برداشته شد. سيس RNAهاى ها اه نوكلئوتيدى حاصل مجدداً توسط ريبوزومها در
 قبل و ترجمهى آنها بها به همان شيوه انر انجام شد
 جدول زير، طول بزر گترين پيتّيدهاى ترجمه شده و ريشههاى آمينواسيدى موجود در محلول تخليص شده (به ترتيب حروف الفباى انگليسى) را در هر مرحله نشان مىدهد:

طول بزر كترين پیتيد ترجمه شده	موجود آمينواسيد ريشههاى شده تخليص محلول در	مرحلهى شمار0ى
هه آمينواسيد	Asn, Gln, Met, Thr	1
ه ه آمينواسيد	Cys, Leu, Lys, Met, Pro	r
r آمينواسيد	Ala, Asn, His	r

با توجه به توضيحات بالا به سؤالات زير رياسخ دهيد.

ب) طول یروتئين اين زن در سلول آلوده به ويروس چند درصد طول آن در سلول سالم است؟ روش محاسبه خود را مختصراً توضيح دهيد.

> AGU** كدون آغاز ترجمه است.

 آن از حالت پررنگَ تشخيص دهيمر.)

 الف) رنگَ هر رنگَيزه را مشخص كنيد. استدلال خود را تا تشخيص رنگَ هر رنگَيزه بنويسيد.

	, استدلال	
		A
		B
		C
		D

ب) چگَونگى وراثت هر آنزيم را مشخص كنيد. (پاسخ نادرست، نمره منفى دارد.)

حچكّونىّى وراثت (مثال: وابسته به جنس غالب)	آنزيم
	E_{1}
	$E_{\text {r }}$
	E_{r}

ج) در جمعيتى در تعادل هادرى- وايبرينگ، اگر فراوانى الل غالب در هر r لوكوس مورد بررسى در جامعه دو برابر فراوانى الل مغلوب آن باشد، چچند درصد پرندگان، داراى تزئين بال بنفشرنت خواهند بود؟ محاسبات خود را به طور مختصر بنويسيد.
 (الهم) فواصل مشخصى در طول لولهى گوارش فرد جاى گَارى شده و غلظت مواد مختلف و يا آنزيمهاى فعال را با با فواصل زمانى مشخص ثبت مى كنند. فردى كه مشكوى به نوعى آسيب در ناحيهاى از رودهى كوچك است به اين پزشك مراجعه كرده و براى بررسى اثر آسيب بر ميزان جذب، روى

 حس گرها را در نقاط مختلف لولهى گوارش فرد را نشان مىدهد. (نقاط نمودار، براساس اعداد كزارش شده است و كنار هر كدام، عرض آن را نشان مىدهد.)
(mM) A غلظت مادهى

الف) با توجه به نمودار فوق، جدول زير را كه مربوط به ميزان ترشح و جذب مايع در لولهى گوارش است، پر كنيد. (ميزان جذب آب توسط رودمى كوچك مشخص شده است. لولهى گوارش فرد را در ابتداى آزمايش خالى فرض كنيد.)

$$
\begin{aligned}
& \text { ب) با توجه به اطلاعات قسمت الف و نمودار قبل، مشخص كنيد چند درصد از مادمى A در هر قسمت رودهى كوچچى جذب شده است؟ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ج) محل اصلى آسيب احتمالاً در كدام قسمت است؟ (پاسخ نادرست، نمره منفى دارد د. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { |) اسيدهاى صفراوى } \\
& \text { (Y) پر اليريدوكسين }
\end{aligned}
$$

12- (15 points) KLP61F is a microtubule-based motor protein involved in spindle assembly and chromosome segregation during mitosis.
(A) Microinjection of an anti-KLP61F antibody results in a gradient of antibody concentration and produces a gradient in the KLP61F content of different spindles. Images from time-lapse movie of an embryo ex-pressing KLP61F-GFP and injected with rhodamine tubulin and antiKLP61F is shown. Time in each frame is given in seconds from the time of nuclear break-down in prophase. Bar is $10 \mu \mathrm{~m}$. The injection site was close to the top of the embryo. Some spindles collapse, as seen at 247 s . toward the bottom of the embryo, some spindles assemble, though they may exhibit defects.
(B) Graph of pole-pole distance as a function of time (left) and quantification of KLP61F remaining on these spindles (right). The normalized ratio of KLP61F-GFP to rhodamine tubulin is used to compare the amount of motor remaining on each spindle at different time points. Put T or F in the parentheses to show whether each statement is true or false? (Negative points will be considered for wrong answers.)
() Injection of the antibody results in activation of the motor protein. () The antibody depletes motor proteins from the spindles.
() Spindle morphology is not dependent on presence or absence of the antibody.
() Higher KLP61F-GFP to rhodamine tubulin ratio correlates with shorter spindles.
() Spindles that collapse have practically no motor on them, whereas spindles that do not collapse or recover from partial collapse have at least 40% remaining.
() Spindles that collapse have at least 50% motor protein remaining on them, whereas spindles that do not collapse or recover from partial collapse have a maximum of 20%.

Normalized

(KLP61F-GFP/rhodamine tubulin)

	t_{1}	t_{2}	t_{3}	Ave.	
-	S 1	1.0	1.0	1.0	1.0
-	S 2	0.6	0.6	0.7	0.6
-	S 3	0.7	0.4	0.5	0.5
-	S 4	0.7	0.7	0.8	0.7
-	S 5	0.0	0.0	0.0	0.0
-	S 6	0.1	0.1	0.1	0.1

 در توضيح نتايج حاصل از آزمونهاى دو گزينهاى زماندار موفق بودهاند. در اين مدلها فرض مىش شود كه اتخاذ تصميمات با تجمع مدام اطلاعات حسى، تا وقتى كه يكى از دو ملاكى پاسخ (a يا b- در شكل) تأمين شوند، انجام مى گیيرد. هر گاه حدى از اطمينان حاصل شود، فرايند تصميمگیيرى خاتمه يافته و پاسخى اعلام مى شود. نوسانات لحظهبهلحظه در مسير نمونه، نشان دهندهى نويز (noise) در فرايند تصميمگيرى است نرخ جريان (Drift rate) كه با

 تصوير مخدوش است. بنابراين نرخ جريان براى تصاوير واضح (مسير بالايى در شكل) در مقايسه با تصاوير مخدوش (مسير پايينى) بيشتر است.

سرعت و دقت تصميهمگيرىهاى اداراكى رابطههاى ويزهاى را نشان مىدهند. دست كم سه زمينهى آزمايشى سايكوفيزيكى وجود دارد كه در آنها رابطهى بين سرعت و دقت مطالعه شده است. هركدام از آنها را مىتوان با يك مدل جما جمعبندى شدهى ساده توضيح داد. دستكارى زمان نمونهبردارى
 كوتاهتر كاهش مى يابد. مدل: وقتى تجمع شواهد متوقف مى شود و يا پاسخ پيش از رسيدن به حد آستانه به اجبار توليد مىشود، جمعبندى مختصر مىشود؛ يعنى ميانگينگيرى و بهبود كمترى در نسبت سيگنال به نويز رخ مىدهد. در نتيجه، پاسخدهى ضعيفترى انجام مى كيرد. ارتباط متقابل دقت و سرعت
سايكوفيزيك: وقتى از فرد مورد آزمون خواسته شو شود
 مدل: در مدل جمعبندى، وقتى آستانه تصميمگيرى بالاست، تجمع بيشترى لازم است تا تصميم اتخاذ شود. اين باعث ميانگیين گيرى بيشتر و در نتيجه پاسخدهى كندتر ولى دقيقتر مىشود.

اثر دشوارى
سايكوفيزيك: وقتى فردى مورد آزمون در مورد زمان پاسخگويى آزاد است (يعنى در يکى آزمون زمان واكنش) هر چه دشوارى بيشتر باشد، زمان متوسط واكنش بيشتر مىشود. مدل: شواهد براى پرسشهاى دشوارتر آهستهتر تجمع مى يابد؛ بنابراين به طور متوسط براى گَشتن از آستانهى تصميمگیرى، زمان بيشترى صرف مىشود. الف) هر مدل مربوط به يكى از نمودارهاى زير است. جدول زير را با نوشتن اسم آنها در پايين نمودار مربوطه كامل كنيد. (پاسخ نادرست، نمرهى منفى دارد.)

ب) در نمودار ميانى، θ چه چییى را نشان مىدهد؟ (با علامت × مشخص كنيد.) (پاسخ نادرست، نمرهى منفى دارد.)

در آزمايشى نمونههايى از چهار دسته از محركههاى مركب چهره-بدن مورد استفاده در يک آزمايش مرتبط در شكل زير نشان داده شده است. محر كهاى هماهنگگ و ناهماهنگگ از عناصر يكسان با تركيب متفاوت تشكيل شدهاند. بدنهاى دو محر ک هماهنگَ تعويض شدند تا عدم تطابق بين احساس بيان شده توسط صورت و بدن ايجاد شود. افراد مورد آزمون بايد دربارهى احساس هر چهره كه با يك بیان بدنى هماهنگ (يا ناهماهنگً (Incongruent (Congruent)

ج) كدام دسته مقدار بالاترى از μ ر را نشان مىدهد؟ (پاسخ نادرست، نمرهى منفى دارد.) () هماهنگ () () تاهماهنگگ تفاوتى ندارد.

د) در هر يك از نمودارهاى زير، محور افقى نوع احساس تعيين شده توسط افراد مورد آزمون را نشان مىدهد. محور عمودى در يكى از نمودارها »دقت" و در ديگَى »زمان واكنش« است. جدول را با عددهاى مناسب پر كنيد. (ياسخ نادرست، نمره منفى دارد.)

Graph 1

Graph 2

